Программирование STM32. Часть 5: Порты ввода-вывода GPIO

В этой части мы разберемся с порами ввода-вывода GPIO микроконтроллера STM32F103C8 и напишем «Hello, World!» с мигающим светодиодом, а так же научимся читать состояние выводов микроконтроллера и использовать встроенный подтягивающий резистор. Предыдущая статья здесь, все статьи цикла можно посмотреть тут: http://dimoon.ru/category/obuchalka/stm32f1.

Введение

General-purpose input/output (GPIO) — важный компонент любого микроконтроллера, с помощью которого он взаимодействует с окружающим миром. В микроконтроллерах STM32 порты именуются буквами A, B, C и так далее: GPIOAGPIOBGPIOC... Каждый GPIO имеет 16 линий ввода/вывода, причем каждая линия может быть настроена независимо от других. Вот варианты настройки:

  • Input floating — вход с отключенными подтягивающими резисторами
  • Input pull-up — вход с подтяжкой к логической единице
  • Input-pull-down — вход с подтяжкой к логическому нулю
  • Analog — аналоговый вход (например, для АЦП)
  • Output open-drain — выход с открытым  коллектором (записали 1 — выход в высокоимпедансном состоянии, записали 0 — выход прижат внутренним транзистором к земле)
  • Output push-pull — выход «тяни-толкай» (записали 1 — на выходе лог. 1, записали 0 — на выходе лог. 0)
  • Alternate function push-pull — альтернативная функция в режиме «тяни-толкай»
  • Alternate function open-drain — альтернативная функция в режиме открытого коллектора

Дам несколько пояснений по поводу режимов.

Режим Analog. Внутри микроконтроллера есть аналогово-цифровые преобразователи, которые, как известно, должны иметь аналоговые входы. Так вот, в режиме Analog ножка микроконтроллера подключается к аналоговому входу АЦП внутри микроконтроллера. Кроме того, отключается вся цифровая обвязка этой ножки для уменьшения цифрового шума и энергопотребления.

Alternate function. В этом режиме ножкой микроконтроллера управляет внутренняя цифровая периферия, например, модуль USART.

Регистры GPIO

Давайте рассмотрим регистры портов GPIO.

Port configuration register low (GPIOx_CRL)

Регистр GPIOx_CRL

Рис. 1. Регистр CRL

Это конфигурационный регистр для выводов порта с номерами от 0 до 7. Каждому выводу предоставлено 4-ре бита конфигурации: 2 бита MODEy и 2 бита CNFy.

MODEy[1:0]: Режим ножки порта, вход или выход. В режиме выхода нужно выбрать максимальную частоту переключения данной ножки, насколько понял это является оптимизацией энергопотребления порта.

  • 00: Вход (значение после сброса)
  • 01: Выход, максимальная частота 10 MHz.
  • 10: Выход, максимальная частота 2 MHz.
  • 11: Выход, максимальная частота 50 MHz.

CNFy[1:0]: Конфигурация режима.

В режиме входа (MODEy[1:0]=00):

  • 00: Analog mode — аналоговый режим (подключен к АЦП или ЦАП-у)
  • 01: Floating input — вход с отключенными подтягивающими резисторами (значение после сброса)
  • 10: Input with pull-up / pull-down — вход с подтяжкой вверх или вниз
  • 11: Reserved — не используется

В режиме выхода (MODEy[1:0]>00):

  • 00: General purpose output push-pull — выход в режиме тяни/толкай
  • 01: General purpose output Open-drain — выход с открытым коллектором
  • 10: Alternate function output Push-pull — выход альтернативной функции режиме тяни/толкай
  • 11: Alternate function output Open-drain — выход альтернативной функции с открытым коллектором

Port configuration register high (GPIOx_CRH)

Регистр GPIOx_CRH

Рис. 2. Регистр CRH

Это конфигурационный регистр для выводов порта с номерами от 8 до 15. Тут все то же, что и для регистра GPIOx_CRL.

Port input data register (GPIOx_IDR) 

Регистр GPIOx_IDR

Рис. 3. Регистр IDR

IDRy: в этих битах содержится входное значение соответствующего порта ввода-вывода.

Port output data register (GPIOx_ODR)

Регистр GPIOx_ODR

Рис. 4. Регистр ODR

ODRy: выходные данные порта.

Port bit set/reset register (GPIOx_BSRR)

Регистр GPIOx_BSRR

Рис. 5. Регистр BSRR

С помощью этого регистра можно сбросить или установить любой бит регистра ODR без операций чтение-модификация-запись.

BRy: Сбросить бит у регистра ODR порта ввода-вывода (y= 0 .. 15)

  • 0: не оказывает влияние на соответствующий бит ODRx
  • 1: Сбрасывает в ноль соответствующий бит ODRx

BSy: Установить бит у регистра ODR порта ввода-вывода (y= 0 .. 15)

  • 0: не оказывает влияние на соответствующий бит ODRx
  • 1: Устанавливает в единицу соответствующий бит ODRx

Port bit reset register (GPIOx_BRR)

Регистр GPIOx_BRR

Рис. 6. Регистр BRR

С помощью этого регистра можно сбросить любой бит регистра ODR без операций чтение-модификация-запись.

BRy: Сбросить бит у регистра ODR порта ввода-вывода (y= 0 .. 15)

  • 0: не оказывает влияние на соответствующий бит ODRx
  • 1: Сбрасывает в ноль соответствующий бит ODRx

Port configuration lock register (GPIOx_LCKR)

Регистр GPIOx_LCKR

Рис. 7. Регистр LCKR

Этот регистр используется для блокировки конфигурационных битов порта после записи корректной последовательности в 16 бит (LCKK) регистра. Значения битов [15:0] используется для блокировки конфигурации GPIO. Во время блокирующей последовательности в LCKK значения LCKR [15: 0] не должны меняться. Когда блокирующая последовательность была записана, конфигурация выбранных портов ввода/вывода может быть изменена только после сброса микроконтроллера. Каждый LCKy бит блокирует возможность изменения четырех битов конфигурации порта (CRL, CRH).

LCKK[16]: Ключ блокировки.

  • 0: Блокировка конфигурации порта не активна.
  • 1: Блокировка конфигурации порта активна. GPIOx_LCKR заблокирован до следующего сброса микроконтроллера.

Для блокировки необходимо выполнить следующую последовательность:

  • Записать 1
  • Записать 0
  • Записать 1
  • Прочитать 0
  • Прочитать 1 (эта операция чтения не является обязательной, а всего лишь подтверждает успешность установки блокировки)

LCKy: Эти биты могут быть прочитаны и записаны, но запись можно произвести только если бит LCKK равен нулю.

  • 0: Конфигурация пина номер y не заблокирована
  • 1: Конфигурация пина номер y заблокирована

Настройка порта GPIO

Итак, с регистрами разобрались, настало время практики. Все примеры в этой статье для микроконтроллера STM32F103C8. В моем распоряжении есть вот такая отладочная плата:

Отладочная плата STM32F103C8

На ней установлен кварцевый резонатор на 8 МГц и светодиод на порту PB12. Вот с помощью этого светодиода мы и устроим Hello, World! 😉

Задача ясна: настраиваем PB12 на выход в режиме push-pull и с помощью регистра ODR дергаем 12-й пин порта GPIOB туда-сюда! Но мы забыли об одной маленько детали: RCC. Дело в том, что по-умолчанию после сброса микроконтроллера все периферийные модули отключены от источника тактового сигнала, в том числе и GPIO. А подать тактирование можно с помощью регистров RCC. В 3-ей части я про это говорил. Для начала нужно определить, к какой шине у нас подключен GPIOB. Открываем даташит на микроконтроллер, ищем вот эту таблицу:

Рис. 8. Таблица шин и периферийных устройств

GPIOB у нас подключен к шине APB2. Идем в Reference manual, открываем раздел про RCC, переходим к пункту 7.3.7 APB2 peripheral clock enable register (RCC_APB2ENR). С помощью этого регистра можно подать тактовый сигнал на устройства шины APB2:

Регистр RCC_APB2ENR

Рис. 9. Регистр RCC_APB2ENR

В регистре RCC_APB2ENR много флагов для разной периферии, в том числе и для нашего GPIOB, флаг называется IOPBEN. Перед началом инициализации PB12 нам надо установить этот бит в единицу.

Поехали программировать! За основу возьмем проект из 2-й части: https://github.com/DiMoonElec/stm32f103c8_empty_project. Создадим функцию инициализации порта:

Первым делом включаем тактирование порта GPIOB:

Далее настройка порта. Нам нужен пин PB12. Его конфигурационные биты находятся в регистре CRH:

Все 😉 Настройка завершена! Вот полный код функции:

Теперь управление. Для этого нам понадобится регистр ODR (рис. 4). Вот функция установки высокого уровня на PB12:

А вот низкого:

Ни чего сложного, почти как на AVR-ках! Однако, у нас все же более серьезный микроконтроллер, и у него есть некоторые фишки. Выражения вида GPIOB->ODR |= (1<<12) являются операциями чтение-модификация-запись. Это долго, и имеет побочные эффекты при одновременном обращении к одному и тому же регистру из разных участков программы (например, из прерывания и основного потока программы). Это называется нарушение атомарности операции. Но в STM32 можно сделать вот так:

Конструкции (1<<12) превращаются в битовую маску 0x1000 на этапе компиляции, и у нас получается только одна операция записи в регистр BSRR или BRR (см. рис. 5, 6).

Ни и простой main() для проверки:

Все, светодиод, подключенный к BP12 мигает! «Hello, World!» готов!

Давайте теперь настроим какой-нибудь вывод порта, например PB15, на вход с подтяжкой к питанию. При подключении PB15 к минусу, у нас будет зажигаться светодиод. Задача ясна, преступаем к реализации. В PortInit() добавим пару строк:

Тут все почти то же самое, как и при настройке PB12, только другой пин и параметры MODE/CNF. А вот последняя строчка требует пояснений. Дело в том, что регистр ODR имеет двойное назначение. Если пин настроен на выход, то соответствующий бит в ODR отвечает за значение логического уровня на этом пине. Но если пин настроен на вход, причем CNF=10 (Input with pull-up / pull-down), то соответствующий бит в ODR управляет подтягивающими резисторами этого пина. К стати, в Reference manual есть вот такая картинка:

Рис. 10. Таблица конфигурации порта

Функция PortInit() приобретает такой вид:

Перейдем к чтению состояния PB15. Для этого существует регистр IDR (рис. 3):

Думаю тут все понятно: если 15 бит в регистре IDR равен 1, то возвращаем единицу, а иначе — ноль.

В этом случае main() будет выглядеть вот так:

На отладочной плате с микроконтроллером stm32f103c8 светодиод зажигается низким уровнем на выводе PB12. Это значит, что при замыкании PB15 на землю, будет прочитано нулевое значение на этом выводе и установлен ноль на PP12, и светодиод зажжется. Если PB15 отключить от земли, то внутренняя подтяжка прижмет вывод к плюсу питания микроконтроллера, на PB15 функция ReadPort() прочтет логическую единицу и на выводе PB12 возникнет лог. 1, что приведет к погасанию светодиода.

На этом все, продолжение следует! 😉 Продолжение.

 

Метки: , , , . Закладка Постоянная ссылка.

14 комментариев: Программирование STM32. Часть 5: Порты ввода-вывода GPIO

  1. Евгений пишет:

    А почему мы не используем регистр BSRR для записи нуля а пользуемся BBR? Из тех же соображений что и ODR. И что будет если в него в двух позициях записать 1 и на установку 1 и на установку 0

    • DiMoon пишет:

      Можно и BBR, разницы ни какой нет. Можно использовать и ODR, но в этом случае нужно выполнять операцию типа Чтение-Модификация-Запись, а для BSRR и BBR только запись — это быстрее и нет возможности возникновения нарушения атомарности операции

    • DiMoon пишет:

      Что будет, если в BSRR записать единицы на установку и сброс одного и того же пина GPIO я без понятия, надо попробовать)) В документации такого вроде не попадалось

  2. andrej пишет:

    Здравствуйте. у меня вопрос — в проекте для задержки между вкл. и выкл. светодиода используется цикл for.а как обстоят дела в стм32 насчет служебных ф-ий типа Delay_ms() как в GCC для 8-ми битных АВРок?

    • DiMoon пишет:

      Сам использую компилятор от IAR, насколько знаю, для ARM-ов ни чего подобного нет, хотя для тех же AVR-ок есть функция __delay_cycles(). В реальных проектах если надо генерить сигнал с периодом больше 1ms и с не очень большой точностью поддержания периода, то реализую это на программных таймерах и конечных автоматах, если периоды меньше и/или нужна большая точность — то аппаратные таймеры. Если же нужно выдать короткий управляющий импульс для какой-то микры на плате — то использую задержку на for, что-то типа for(i=0; i<5; i++) {asm("nop");}, asm("nop") для того, чтоб оптимизатор не выкинул пустой цикл.

      • Den пишет:

        Нашел на просторах инета такой интересный код

        Никаких таймеров, все быстро и компактно. Только у меня в include надо core_cm3.h вместо stm32f10x_tim.h. Использую STM32CubeIDE

        • Den пишет:

          и функцию delta желательно переписать с учетом переполнения счетчика, чтобы не получить непонятные глюки на граничных значениях

  3. andrej пишет:

    Здравствуйте. еще вопросик — например я затактировался от HSE через PLL x9. в итоге частота 72 Мгц. Далее например подключаю GPIOB : RCC->APB2ENR|=RCC_APB2ENR_IOPBEN; .Но ведь выход порта В я могу настроить только на макс. 50Мгц , Значит ли это что и делитель АРВ2 в этом случае настроить как минимум на HCLK/2 поскольку частота на этой шине 72 Мгц?

    • DiMoon пишет:

      То, что настраивается в регистрах GPIO как максимальная скорость работы, как ни странно, не имеет ни какого отношения к тактированию. Этими битами настраивается максимальный потребляемый ток данного пина. Пример: если настроить пин на максимальную частоту 2 МГц, но при этом подать 72 МГц, то сигнал на этом пине будет больше похож на синус, чем на меандр. Если же настроить на 50 МГц, то в этом случае на выходе будет уже что-то более-менее похожее на меандр

  4. Den пишет:

    Оставлю это здесь в качестве напоминалки. ))
    Понадобилось организовать параллельный интерфейс между двумя МК — одним махом байт передавать без последовательных заморочек.
    Самое быстрое решение — BSRR. Готовим маску и засылаем его туда.
    Пример — грузим байт в порт А биты с 0 по 7:
    uint8_t data = 0xAA;
    uint32t mask = ((data) | (~data<BSRR = mask;

    Пример — грузим байт туда же, но в биты 4-11, поскольку первые четыре заняты под АЦП
    uint8_t data = 0xAA;
    uint32t mask = ((data<<4) | (~data<BSRR = mask;

    В принципе, никто не мешает сделать так:
    mask=0;
    if(data&0x01) mask|=GPIO_BSRR_BS4; else mask|=GPIO_BSRR_BR4;
    if(data&0x02) mask|=GPIO_BSRR_BS5; else mask|=GPIO_BSRR_BR5;
    if(data&0x04) mask|=GPIO_BSRR_BS6; else mask|=GPIO_BSRR_BR6;
    if(data&0x08) mask|=GPIO_BSRR_BS7; else mask|=GPIO_BSRR_BR7;
    if(data&0x10) mask|=GPIO_BSRR_BS8; else mask|=GPIO_BSRR_BR8;
    if(data&0x20) mask|=GPIO_BSRR_BS9; else mask|=GPIO_BSRR_BR9;
    if(data&0x40) mask|=GPIO_BSRR_BS10; else mask|=GPIO_BSRR_BR10;
    if(data&0x80) mask|=GPIO_BSRR_BS11; else mask|=GPIO_BSRR_BR11;
    GPIOA->BSRR=mask;

    Если бы не два но:
    1. Скорость выполнения — первый вариант выполняется 31 тик процессора, второй — 146 — первый в четыре раза быстрее
    2. Размер кода (неоптимизированного) 36 байт и 328 — в 9 раз меньше

  5. Den пишет:

    Пример 1.

    Пример 2.

  6. Denis пишет:

    Здравствуйте!
    Написал программку для опроса 2 датчиков и 1 кнопки.
    PB11 — термодатчик DS18B20
    PB12 — датчик температуры и влажности DHT22
    PB3 — кнопка
    Если помимо опроса датчиков идёт опрос кнопки, то датчик влажности показывает влажность 0, температуру при этом показывает верно. А если закомментировать опрос кнопки, то влажность отображается корректно.
    Почему такая проблема ? Что я делаю не так ?

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *